Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Rev. chil. pediatr ; 89(4): 432-440, ago. 2018. tab, graf
Article in Spanish | LILACS | ID: biblio-1042716

ABSTRACT

El cáncer es la segunda causa de muerte en el mundo, según datos de la Organización Mundial de la Salud (OMS) en el año 2015 ocasionó 8,8 millones de muertes. Dentro de los factores de riesgo para el desarrollo de cáncer se encuentran el tabaquismo y el consumo de alcohol. En Chile el 33,6% de la población fuma y un 21,2 % de los jóvenes. El consumo de alcohol en la población chilena es de 74,5 % y en los jóvenes de un 12,2 %. Entre los factores fisiológicos que influyen en el desarrollo de cáncer, el factor genético juega un rol relevante, habiéndose demostrado que la presencia de polimorfismos genéticos alteran la capacidad del organismo de eliminar contaminantes y aumentan el riesgo de desarrollar cáncer. Lo mismo ocurre con polimorfismos que impiden la reparación de ADN debido a daños producidos por efecto de contaminantes ambientales como el humo de cigarrillo. El objetivo de esta revisión es analizar el estado del arte de la relación entre farmacogenética, tabaco y alcohol como factores de riesgo para el desarrollo de cáncer. Los resultados sugieren que la presencia de po limorfismos que alteran la función de enzimas de biotransformación fase I (CYP1A1, CYP1E1) y fase II (GST), además de polimorfismos en enzimas de reparación del ADN (ERCC1/ERCC2) aumentan el riesgo de cáncer inducido por el hábito tabáquico y alcohólico. Esta asociación es importante, si consideramos que en la población chilena el hábito de fumar y beber alcohol es altamente prevalente.


Cancer is the second leading cause of death in the world, causing 8.8 million deaths in 2015 according to the World Health Organization (WHO). Risk factors for cancer include smoking and alcohol con sumption. In Chile, 33.6% of the population and 21.2% of young people smokes. Alcohol consump tion in the Chilean population is 74.5% and 12.2% in young people. Among the physiological factors that influence the development of cancer, the genetic factor plays a relevant role. It has been shown that the presence of genetic polymorphisms that alter the ability of the body to eliminate contami nants increase the risk of developing cancer. The same applies to polymorphisms that prevent DNA repair due to damage caused by environmental pollutants such as cigarette smoke. The objective of this review is to analyze the state of the art of the relationship between pharmacogenetics, smoking, and alcohol consumption as risk factors for the development of cancer. In conclusion, the results suggest that the presence of polymorphisms that alter the function of biotransformation enzymes phase I (CYP1A1, CYP1E1) and phase II (GST), as well as polymorphisms in DNA repair enzymes (ERCC1 / ERCC2), increase the risk of cancer induced by smoking and alcohol consumption. This association is important considering that smoking and drinking alcohol are highly prevalent among the Chilean population.


Subject(s)
Humans , Alcohol Drinking/adverse effects , Inactivation, Metabolic/genetics , Genetic Predisposition to Disease , Tobacco Smoking/adverse effects , Neoplasms/etiology , Pharmacogenetics , Polymorphism, Genetic , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Genetic Markers , Risk Factors , Tobacco Smoking/genetics , Tobacco Smoking/metabolism , Neoplasms/metabolism
3.
Mem. Inst. Oswaldo Cruz ; 107(4): 437-449, June 2012. ilus
Article in English | LILACS | ID: lil-626435

ABSTRACT

The use of chemical insecticides continues to play a major role in the control of disease vector populations, which is leading to the global dissemination of insecticide resistance. A greater capacity to detoxify insecticides, due to an increase in the expression or activity of three major enzyme families, also known as metabolic resistance, is one major resistance mechanisms. The esterase family of enzymes hydrolyse ester bonds, which are present in a wide range of insecticides; therefore, these enzymes may be involved in resistance to the main chemicals employed in control programs. Historically, insecticide resistance has driven research on insect esterases and schemes for their classification. Currently, several different nomenclatures are used to describe the esterases of distinct species and a universal standard classification does not exist. The esterase gene family appears to be rapidly evolving and each insect species has a unique complement of detoxification genes with only a few orthologues across species. The examples listed in this review cover different aspects of their biochemical nature. However, they do not appear to contribute to reliably distinguish among the different resistance mechanisms. Presently, the phylogenetic criterion appears to be the best one for esterase classification. Joint genomic, biochemical and microarray studies will help unravel the classification of this complex gene family.


Subject(s)
Animals , Esterases/classification , Insecticide Resistance/genetics , Inactivation, Metabolic/genetics , Esterases/chemistry , Esterases/genetics , Phylogeny
4.
Khartoum Pharmacy Journal. 2005; 8 (1): 9-13
in English | IMEMR | ID: emr-72972

ABSTRACT

cytochrome P450s [CYPs] are members associated heme protein and hepatic microsomal enzymes, which play important role in drugs metabolism and detoxification. Seven of the 57 known human isoforms of P450s responsible for metabolism of more than 90% of the currently used drugs, CYP1A2, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Some. of them, CYP2D6, CYP2C9 and CYP2C19, have been shown to be polymorphic as a result of single nuclcotide polymorphisms [SNPs], gene deletions, and gene duplications. The effect of the polymorphisms ranges from a complete loss of functional protein to an increase in enzyme activity and can impact the drug development and clinical application. Most pharmaceutical companies have increasingly screened out compounds that are metabolized solely by polymorphic CYPs. Retrospective studies showed that one of the major causes of the new chemical entities [NCE] failure to reach the clinical stage was related to pharmacokinetic and toxicological issues. Therefore the industry has invested in the science and technology of absorption, distribution, metabolism, excretion and toxicity [ADMET] in order to reduce NCE attribution rates.. Drug metabolism is the most important determinant of the ADMET of most compounds and the role CYP450 is predominant. Overall, current trends in the industry have been fueled by increased managed healthcare, the desire to minimize the need for therapeutic drug monitoring and CYP genotyping in medical practice, and a very competitive marketplace


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Inactivation, Metabolic/methods , Inactivation, Metabolic/genetics , Drug Evaluation , Pharmaceutical Preparations/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL